NATIONAL EDUCATION POLICY-2020

Syllabus for Sri Dev Suman Uttarakhand University and Affiliated Colleges

PROPOSED STRUCTURE OF <u>Under Graduate Physics</u> Course Syllabus

2022

Board Of Studies

Department of Physics, Sri Dev Suman Uttarakhand University Pt. Lalit Mohan Sharma Campus Rishikesh

Syllabus Preparation Committee

A: Department of Physics, Sri Dev Suman Uttarakhand University, Pt. Lalit Mohan Sharma Campus, Rishikesh

S.N.	Name	Designation	Signature
1.	Dr. Yogesh Kumar Sharma	Professor & Head	Jen 2 1018/2
2.	Dr. Manoj Yadav	Professor	1. de
3.	Dr. Rajkumar Tyagi	Professor	RA
4.	Dr. Bimal Prakash Bahuguna	Professor	JS 1 10-8-200
5.	Dr. Hemant Singh	Associate Professor	Hemantson

B: Director from Research Institute

1. Professor Durgesh Pant	Director General UCOST, Dehradun	
------------------------------	-------------------------------------	--

C: Expert from Other Institutions

1.	Dr. A. A. Baurai	Professor & Director	
		S. R. T Campus, Badshahithol Tehri	
		(Garhwal)	
		H. N. B. Garhwal Univeristy Srinagar	
		(Garhwal)	X
2.	Dr. D. P. Bhatt	Professor & Principal	Rada
		Govt. Degree College, Vedhikhal	Just 340)

D: Invited Principals from Government Post Graduate Colleges

S. N.	Name	Designation and Address	Signature
1.	Dr. D. C. Nainwal	Professor & Principal	A La blott
2.	Dr. Renu Negi	Govt. P. G. College, Doiwala Professor & Principal	Romenoon
3.	Dr. D. P. Bhatt	Govt. P. G. College, New Tehri Professor & Principal	Co lobal
		Govt. Degree College, Vedhikhal	DI-SK 3 16

			pers in Six Semesters (B.Sc. Degree) -wise Titles of the Papers in Physics		
Year	Sem.	Course Code	Paper Title	Theory/ Practical	Credits
		_	Certificate Course in Basic Physics	-	
FIRST	Ι		Mechanics	Theory	(04)
YEAR			Mechanical Properties of Matter	Practical	(02)
	II		Electricity and Magnetism	Theory	(04)
			Demonstrative Aspects of Electricity& Magnetism	Practical	(02)
			Diploma in Applied Physics		
	III		Thermodynamics and Statistical Physics	Theory	(04)
SECOND YEAR			Demonstrative Aspects of Thermal Properties of Matter	Practical	(02)
	IV		Optics	Theory	(04)
			Demonstrative Aspects of Optics	Practical	(02)
			Bachelor of Science		
	V		Solid State Physics	Theory	(04)
THIRD YEAR			Demonstrative Aspects of Solid State Physics & Circuit Designing	Practical	(02)
			Basic Electronics	Theory	(04)
			Demonstrative Aspects of Basic Electronics	Practical	(02)
	VI		Modern Physics & Elementary Quantum Mechanics	Theory	(04)
			Demonstrative Aspects of Modern Physics	Practical	(02)
			Analog and Digital Electronics	Theory	(04)
			Demonstrative Aspects of Analog & Digital Circuits	Practical	(02)

Subject prerequisites:

- 1. For Semester I: 12th pass with subjects Physics, Chemistry & Mathematics
- 2. For Semester II: Passed Semester I with Physics
- 3. For Semester III: Passed Semester II with Certificate Course in Basic Physics
- 4. For Semester IV: Passed Semester III
- 5. For Semester V: Passed Semester IV with Diploma in Applied Physics
- 6. For Semester VI: Passed Semester V

Programme outcomes (POs):

Students having Degree in B.Sc. (with Physics) should have knowledge of different concepts and fundamentals of Physics and ability to apply this knowledge in various fields of academics and industry. They may pursue their future career in the field of academics, research and industry.

PO 1	1. Competence in the methods and techniques of calculations using Mechanics.
	2. Students are expected to have hands-on experience to apply the theoretical
	knowledge to solve practical problems.
PO2	1. Students are expected to have deep understanding of electricity and magnetism.
	2. Student should be able to make basic electrical circuits and handle electrical
	instruments.
PO 3	1. Competence in the concepts of Thermodynamics and Statistical Physics.
	2. Students are expected to have hands on experience in Thermal Physics and
	Statisctical Physics Experiments.
PO 4	1 Knowledge of different concepts in Optics.
	2 Students are expected to have hands on experience of Experiments of
	Optics
PO 5	1. Knowledge of basic concepts of Solid State Physics with their applications
	2. Students are expected to have an insight in handling electronic instruments.
PO 6	1. Comprehensive knowledge of Analog & Digital Principles and Applications.
	2. Learn the integrated approach to analog electronic circuitry and digital
	electronics for R&D.
	1

Programme specific outcomes (PSOs): UG I Year / Certificate course in Basic Physics

After completing this certificate course, the student should have

- Acquired the basic knowledge of Mechanics, Electricity and Magnetism.
- Hands-on experience to apply the theoretical knowledge to solve practical problems of basic physical phenomena. He should be able to carry out experiments to understand the laws and concepts of Physics.
- An insight in understanding electrical circuits and in handling electrical instruments.

Programme specific outcomes (PSOs): UG II Year/ (Diploma in Applied Physics)

After completing this diploma course, the student should have

• Knowledge of different concepts in Thermodynamics, Statistical Physics and Optics.

• Knowledge of different aspects of Thermal Physics which serves as a basis for many physical systems used in industrial applications and deals with the physics and technology of Engines and Refrigerators.

• A deeper insight in Optics to understand the Physics of many optical instruments which are widely used in research and Industry, Optoelectronics, IT and communication devices, and in industrial instrumentation.

• Knowledge of basic concepts of optical instruments with their applications in technology.

	Programme specific outcomes (PSOs): UG III Year / Bachelor of Science
After co	mpleting this degree course, the student should have:
PSO 1	Knowledge of Mechanics and basic properties of matter. The course will empower him to apply his theoretical knowledge in various physical phenomena that occur in day to day life and he can use this scientific knowledge for the betterment of the society.
PSO2	Understanding of basic concepts related to Electricity and Magnetism. He should be proficienct in designing and handling different electrical circuits
PSO3	Expertise in different aspects of Thermal and Statistical Physics which serves as a basis for many physical systems used in industrial applications and deals with the physics and technology of Engines and Refrigerators.
PSO4	Proficient in the field of Optics which will increase his demand in research and industrial establishments engaged in activities involving optical instruments.
PSO5	Basic knowledge in the field of Modern physics, which have utmost importance at both undergraduate and graduate level.
PSO6	 Comprehensive knowledge of Analog & Digital Principles and Applications. Learn the integrated approach to analog electronic circuitry and digital electronics for R&D.

	CERTIFICATE COURSE IN BASIC	PHYSICS	
Programme	Certificate Course in Basic Physics	Year: I Seme Pape	ester: I er-I
Subject: Phy	ysics		
Course Coo	le: Course Title: Mechanics		
Course Outc	omes		
1. Understand	ing of Vector Algebra and Vector Calculus.		
2. Understand	the physical interpretation of gradient, divergence and	curl.	
3. Study of gra	avitational field and potential and understanding of Kep	ler's laws of Planetary n	notion.
4. Understand	ding of different frames of references and conservation l	aws.	
	d the dynamics of rigid body and concept of moment of ies and its applications.	inertia. Study of momen	nt of inertia o
	properties of matter, response of the classical systems and its applications.	s to external forces and	l their elasti
7. Comprehe applications.	end the dynamics of Fluid and concept of viscosity and	surface tension along w	ith its
8. Understan	ding the basic idea of waves and oscillations through S	imple harmonic motion.	
Credits: 04		Core Compuls	ory
Max. Marks External Exa Internal Asso	am: 75	Min. Passing N	Iarks: 33
Total No. of	Lectures-Tutorials-Practical (in hours per week): 4-0)-0	
Unit	Торіс		No. of Lectures
Unit I	Vectors Algebra Vector algebra. Scalar and vector products, scalar and Derivative of a vector with respect to a parameter, De divergence and curl, Gauss divergence theorem and a theorem and applications; and Green's theorem, Line, integral of a vector function.	el operator, gradient, pplications, Stokes curl	10

Unit II	Gravitation field and potential	
	Gravitational field and potential, Gravitational potential energy, Gravitational	
	field Intensity and potential due to a ring, a spherical shell, solid sphere and	10
	circular disc, gravitational self-energy, Inverse square law of forces, Kepler's	
	laws of planetary motion.	
Unit III	Conservation Laws	
	Frames of reference, Concept of inertial and Non-inertial frames of references,	
	Work energy theorem, Conservative and non-Conservative forces, Linear	
	restoring force, Gradient of potential, Conservation of energy for the particle;	10
	Energy function, Concept of Centre of mass, Angular momentum and torque,	
	Laws of conservation of total energy, total linear momentum and total angular	
	momentum along with their examples.	
Unit IV	Dynamics of rigid body and Moment of Inertia	
	Translatory and Rotatory motion, Equation of motion for Rotating rigid body,	
	angular momentum vector and moment of inertia, Theorem of parallel and	10
	perpendicular axes, Moment of inertia of a cylinder, rod, lamina, ring, disc,	
	spherical shell, solid sphere, kinetic energy of rotation, rolling along a slope,	
	Application to compound pendulum.	
Unit V	Properties of Matter	
	Basic concept, Elastic constants and their Interrelations, torsion of cylinder,	10
	bending of beam, bending moment, Cantilever, shape of Girders/ rail tracks.	10
	Viscosity, Stokes's law, Posieuille's formula, Equation of continuity,	
	Bernoulli's theorem, Surface tension and its molecular interpretation.	
Unit VI	Waves and Oscillations	
	Characteristics, Differential equation of a wave motion, Periodic motion, SHM	
	in mechanical systems, Energy of Simple harmonic oscillator, Superposition of	
	SHM(s), Applications of Simple harmonic motion in compound pendulum,	10
	Torsional pendulum and LC circuit, Composition of two SHM(s) of different	
	frequency ratio, Lissajous' figures for equal frequencies ratio and 2:1	
	frequencies ratio.	

- 1. R. Resnick and D. Halliday: Physics Vol-I
- 2. Berkeley Physics Course: Mechanics Vol-I
- 3. R. P. Feynman, R. B. Leighton and M. Sands: The Feynman Lectures in Physics
- 4. D. S. Mathur: Mechanics
- 5. D. S. Mathur: Elements of Properties of Matter
- 6. Murray Spiegel, Seymour Lipschutz, Dennis Spellman: Schaum's Outline Series: Vector Analysis, McGraw Hill, 2017.
- 7. J. C. Upadhyaya: Mechanics

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment- (25 marks)

Course Prerequisites: Physics and Mathematics in 12th

	CERTIFICATE COURSE IN BASIC PHYSICS	5	
Programme:	Certificate Course in Basic Physics	Year: I	Semester: I Practical
Subject: Phys	ics (Practical)		
Course Code	Course Title: Mechanical Properties of Matter (Practical)		
Course Outco	mes:		
1. Experimenta	l physics has the most striking impact on the industry wherever t	the instrume	nts are used
to study and	determine the mechanical properties.		
2. Measuremen	nt precision and perfection is achieved through Lab Experiments	•	
Credits: 02	C	Core Compu	lsory
Max. Marks: Internal (Reco External Prac External Viva	ord File): 15 tical Exam: 20	Ain. Passing	Marks: 17
Total No. of L	ectures-Tutorials-Practical (in hours per week): 0-0-4		
Unit	Торіс		No. of Lectures
	Lab Experiment List		
	 To study the Motion of Spring and calculate (a) Spring g and (c) Modulus of rigidity. To determine the Moment of Inertia of a Flywheel. To determine the Moment of Inertia of a Inertia table To determine g and velocity for a freely falling body Timing Technique. To determine Coefficient of Viscosity of water by Ca Method (Poiseuille's method). To determine the Young's Modulus of a Wire by Of Method. To determine the Modulus of Rigidity of a Wire by Mat To determine the elastic Constants of a wire by Searle's 10. To determine the value of g using Bar Pendulum. To determine the value of g using Kater's Pendulum. To determine Surface Tension. 	using Digita apillary Flov ptical Lever xwell'sneed	1 60 W
	13. To determine the modulus of rigidity by Barton's appar (Horizontal/Vertical)	atus	

1. B. L. Worsnop, H. T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.

- 3. Indu Prakash: Practical Physics
- 4. S. L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74

2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this list by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on attendance of student in Lab and presentation of practical in the record file. The marks shall be as follows **Record File (15 marks)**

PREREQUISITE: Opted / Passed Semester I, Theory Paper-1

Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

CERTIFICATE COURSE IN BASIC PHYSICS Semester: I **Programme:** Certificate Course in Basic Physics Year: I Vocational/ Minor **Subject: Physics Course Code: Course Title: Basic Instrumentation Skills** Vocational/Minor Credits: 03 (Experiments/hands on training) Max. Marks: 100 Min. Passing Marks: 33 **External Exam: 75 Internal Assessment: 25** Total No. of Lectures-Tutorials-Practical (in hours per week): 3-0-0 Unit Topic No. of Lectures Unit I **Basics of Measurement** Instruments accuracy, precision, sensitivity, resolution, range, least count of 15 different instruments etc. Errors in measurements and loading effects. Principle of Galvanometer, Voltmeter and Ammeter, Conversion of galvanometer into voltmeter and ammeter. Unit II Multimeter Principles of measurement of dc voltage and dc current, ac voltage, ac current and resistance. Specifications of a multimeter and their significance. 10 Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity. Unit III **Digital Multimeter** Block diagram and working of a digital multimeter. Working principle of time 10 interval, frequency and period measurement using universal counter/frequency counter, time-base stability, accuracy and resolution. Unit IV **Digital Instruments:** Comparison of analog and digital instruments. Characteristics of a digital 10 meter. Working principle of digital voltmeter.

Suggested Reading

- 1. B. L. Theraja: A text book in Electrical Technology
- 2. M. G. Say: Performance and design of AC machines
- 3. Venugopal: Digital Circuits and Systems
- 4. P. Vingron, Shimon: Logic Circuit Design
- 5. Subrata Ghoshal: Digital Electronics.
- 6. S. Salivahanan & N. S. Kumar: Electronic Devices and Circuits, 3rd Edn

Suggested Online Link:

 MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/
 National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
 SwayamPrabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8
 Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFICATE COURSE IN BASIC PHYSICS

Programme:	Certificate Course in Basic Physics	Year: I	Semester: Paper-I
	Subject: Physics		
Course Code:	Course Title: Electricity and Magnetism		
Course Outco	omes:		
1. Understandi	ng of Electric Field and Potential. Evaluation of Electric Field and Po	tential for d	ifferent
ypes of charge	e distributions.		
•	ctric and Magnetic Fields in matter. Understand the concept of polarize isplacement Vector.	zability, Ma	gnetization
	ady and Varying electric currents.		
•	ing of different aspects of alternating currents and its applications.		
	the Magnetostatics, Lorentz Force and Energy stored in magnetic Fie	ld.	
	I the different aspects of Electromagnetic induction and its application		
-	ing the relation between electricity and magnetism.		
Credits: 04		Compulsor	y
Max. Marks:	100 Min	Passing Ma	rks. 33
External Exa Internal Asse	m: 75		II N5. 55
	Lectures-Tutorials-Practical (in hours per week): 4-0-0		
Unit	Торіс		No. of Lecture
Unit I	Electric field and potential		
	Coulomb law, Gauss' theory, its integral and differential forms, line	e integral of	•
	Electric field, Electric field and potential due to an arbitrary charge		10
	distribution. Electrostatic energy, energy stored in an Electric field.		10
	field and potential due to long charged wire, Spherical shell, sp	phere, disc,	
	dipole.		
Unit II	Electric and Magnetic fields in Matter		
	Moments of charge distributions, Polar and non-polar molecule, pol	larization	
	vector, electric displacement vector, three electric vectors, dielectric	e	10
	susceptibility and permittivity, polarizability, Clausius-Mossotti rela	ation	10
	Magnetization, magnetic susceptibility, diamagnetic, paramagnetic	and	
	ferromagnetic substances, Hysteresis and B-H curve, hysteresis lo	oss.	
Unit III	Electric Currents (Steady and Varying)		
Unit III	Electric Currents (Steady and Varying) Current density, Equation of Continuity, Ohm's law and	l electrical	l
Unit III			10
Unit III	Current density, Equation of Continuity, Ohm's law and	urrent,	

Unit IV	Magnetostatics	
	Lorentz force, Bio-Savert's law, Ampere's law and application, Application	10
	of Biot-Savert law, magnetic field due steady current in a long straight wire,	
	coil, Interaction between two wires, field due a Helmholtz coil, solenoid	
	and current loop, magnetic vector potential, Energy stored in Magnetic field.	
Unit V	Electromagnetic Induction and Alternating Current	
	Faraday's laws of induction, Lenz's law, Electromotive force, Measurement of	
	magnetic field, Eddy current, Mutual inductance, Self-inductance. Impedance,	10
	admittance and reactance, R-C, R-L and L-C circuits with alternating e.m.f.	
	source, series and parallel L-C-R circuits, resonance and sharpness, Quality	
	factor, Power in A. C. circuits, Choke coil.	
Unit VI	Maxwell's Equations	10
	Review of electrostatic and electromagnetic equations, their differential and	
	integral forms, Maxwell's equations. Displacement Current. Wave Equations.	
	Plane Waves in Dielectric Media. Poynting Theorem and Poynting Vector.	
	Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic	
	Field Energy Density.	

- 1. Edward M. Purcell: Electricity and Magnetism
- 2. J. H. Fewkes & J. Yarwood: Electricity & Magnetism, Vol. I
- 3. D C Tayal: Electricity and Magnetism, Himalaya Publishing House Pvt. Ltd., 2019.
- 4. D. J. Griffiths: Introduction to Electrodynamics.
- 5. Lal and Ahmed: Electricity and Magnetism
- **6.** H. K. Malik and A. K. Singh: Engineering Physics, McGraw Hill Education (India) Private Limited, 2018.
- **7.** Richard P. Feynman, Robert B. Leighton, Matthew Sands: The Feynman Lectures on Physics Vol. 2, Pearson Education Limited, 2012.

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment (25 marks)

Course Prerequisites: Passed semester I, theory paper-1

	CERTIFICATE COURSE IN BASIC PHYSICS		
Programm	e: Certificate Course in Basic Physics		Semester: II Practical
	Subject: Physics (Practical)	1	
Course Co	ode: Course Title: Demonstrative Aspects of Electricity & Magnet	ism (Practical)	
Course Out	tcomes:		
4 5 '			1.
-	ental physics has the most striking impact on the industry wherever inductor the electric and magnetic properties.	the instruments	are used to
•	d determine the electric and magnetic properties. ment precision and perfection is achieved through Lab Experiments.		
Credits: 02		ore Compulsory	V
Max. Mark			
Internal (R	ecord File): 15	in. Passing Ma	rks: 17
External Pr	ractical Exam: 20 iva Voce: 15		
	f Lectures-Tutorials-Practical (in hours per week): 0-0-4		
Unit	Торіс		No. of
Omt	Торк		Lectures
	Lab Experiment List		
	1. Frequency of A.C. Mains.		
	2. Melde's Experiment.		
	3. Calibration of Voltmeter by potentiometer.		
	4. Calibration of ammeter by potentiometer.		
	5. Specific resistance determination by Carey Foster bridge.		
	6. Conversion of a Galvanometer into a Voltmeter.		60
	7. Conversion of a Galvanometer into Ammeter.		
	8. Variation of magnetic field along the axis of a current carry	ng circular coil.	
	9. Electrochemical equivalent.		
	10. De Sauty's bridge- C_1/C_2		
	11. R_1/R_2 by potentiometer.		
	12. Study of R-C, L-C-R circuits.		
	13. Determination of self inductance, mutual inductance.	1 .	
	14. Magnetic field determination by search coil and ballistic ga	Ivanometer.	
	15. Sonometer.		

1. B. L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.

3. Indu Prakash: Practical Physics

4. S. L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74

2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Semester I

Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

	CERTIFICATE COURSE IN		
Programme	: Certificate Course in Basic Physics	Year: I Se	mester: II ocational/Mino
	Subject	: Physics	
Course Co	de: Course Title: Electror	nics Instrumentation skill	S
Credits: 03		Vocational/N	Ainor
Aax. Marks External Ex nternal Ass		Min. Passing	g Marks: 33
Total No. of Unit	Lectures-Tutorials-Practical (in hours per v	veek): 3-0-0	No. of
Unit I	Торк		Lecture
	Principles of voltage, measurement (block electronic Voltmeter, Multimeter and their s of AC millivoltmeters: Amplifier- rectifier, a diagram ac milli -voltmeter, specifications an	ignificance. AC millivoltmeter and rectifier- amplifier. Block	10
Unit II	Cathode Ray Oscilloscope Block diagram of basic CRO. Construction of focusing and acceleration (Explanation only- discussion on screen phosphor, visual persist base operation, synchronization. Front panel and their significance. Use of CRO for the m frequency, time period. Special features of du oscilloscope, probes. Digital storage Oscillo of working.	of CRT, Electron gun, electrosta – no mathematical treatment), b zence & chemical composition. controls. Specifications of a C neasurement of voltage (dc and ual trace, introduction to digital	rief Time RO 15 ac I
Unit III	 Signal and pulse Generators Block diagram, explanation and specification and pulse generator. Brief idea for testing, sp wave analysis. 		10
Unit IV			

- 1. B. L. Theraja: Basic Electronics
- 2. M. G. Say: Performance and design of AC machines
- 3. Venugopal: Digital Circuits and Systems
- 4. P. Vingron, Shimon: Logic Circuit Design
- 5. Subrata Ghoshal: Digital Electronics
- 6. S. Salivahanan & N. S. Kumar: Electronic Devices and Circuits
- 7. V. K. Mehta: Basic Electronics

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Minor/Elective (04 Credit, One from the list El 1)

Students having major in Physics will have to choose the elective/minor from sl. no. 1-4 only. Other students may have choice from sl. no. 1-6.

- 1. Statistical Physics
- 2. Numerical Methods
- 3. Computer Programming
- 4. Waves and Oscillations
- 5. Fundamental Mechanics
- 6. Basic Electricity and Magnetism

CERTIFICATE COURSE IN BASIC PHYSICS

Programme: Cer	tificate Course in Basic Physics	Year: I	Semester: I/II
	Subject: Physics		
Course Code:	Course Title: Statistical Physics		

Credits: 04	Minor/Elective	
Max. Marks External Ex Internal Ass	am: 75 essment: 25	rks: 33
Unit	Lectures-Tutorials-Practical (in hours per week): 4-0-0 Topic	No. of Lectures
Unit I	 Basic Concepts in Statistical Physics Basic postulates of Statistical Physics, Macro and Micro States, Phase Space, Density distribution in phase space, μ space representation and its division, Statistical average values, Condition of equilibrium, Stirling's Approximation, Entropy and Thermodynamic probability, Boltzmann entropy relation. 	15
Unit II	Ensembles and Thermodynamic connections Ensembles, Micro -canonical, Canonical and Grand Canonical ensembles, Statistical definition of temperature and interpretation of second law of thermodynamic, Pressure, Entropy and Chemical potential. Entropy of mixing and Gibb's paradox, Partition function and Physical significances of various statistical quantities.	15
Unit III	Classical Statistics Maxwell-Boltzmann statistics and Distribution law, Energy distribution function, Maxwell Boltzmann law of velocity distribution (most probable velocity, average velocity, RMS velocity), Limitations of M-B statistics, Elementary idea of quantum statistics.	15

Unit IV	Bose-Einstein and Fermi-Dirac Statistics	
	B-E distribution law, Thermodynamic functions of a strongly Degenerate Bose	15
	Gas, Bose Einstein condensation, properties of liquid He (qualitative	10
	description), Radiation as a photon gas and Thermodynamic functions of	
	photon gas, Bose derivation of Planck's law. Fermi-Dirac Distribution Law,	
	Thermodynamic functions of a Completely and strongly Degenerate Fermi	
	Gas, Fermi Energy, Electron gas in a Metal, Specific Heat of Metals,	
	Relativistic Fermi gas, White Dwarf Stars, Chandrasekhar Mass Limit.	

- 1. B. B. Laud: Introductions to Statistical Mechanics
- 2. J. K. Bhattarjee: Statistical Physics (Allied Publishers)
- 3. F. Reif : Statistical Physics (Mc.Graw Hill)
- 4. Kamal Singh: Elements of Statistical Mechanics
- 5. K. Hung: Statistical Physics (Chapman and Hall/CRC)
- 6. K. E. Atkinson: Elementary Numerical Analysis
- 7. R. K. Pathria, B. Heinemann: Statistical Mechanics

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFICATE COURSE IN BASIC PHYSICS

Programme: Certificate Course in Basic Physics Subject: Physics

Course Code:

Course Title: Numerical Methods

Credits: 04	Minor/Elective	
Max. Marks External Exa Internal Ass	am: 75	rks: 33
Fotal No. of	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit	Торіс	No. of Lectures
Unit I	Unit IOrdinary Differential EquationsBrief review of ordinary differential equations, Exact equations, Equations reducible to exact equations, Equations of the first order and higher degrees, Clairaut's equation. Applications of ODEs in concerned engineering branch. Linear differential equations with constant co-efficient, Complimentary functions and particular integral, Method of variation of parameters, Equations reducible to linear equations), Initial and Boundary value problems Simultaneous linear equations with constant co-efficient, Applications of	
Unit II	differential equations in concerned engineering branch.Partial Differential EquationsFormulation of Partial Differential Equations (PDE), Solution of PDE, LinearPDE of First Order (Lagrange's Linear Equation), Non-linear Equation of FirstOrder (Standard Forms), Charpit's Method, Homogeneous Linear Equationswith Constant Coefficients, Non-homogeneous Linear Equations. Applicationsof PDE: Method of separation of variables, Solution of one dimensional waveand heat equation and two dimensional Laplace's equation.	15
Unit III	Transforms Theory Laplace Transform: Laplace Transforms of standard functions and their properties, Inverse Laplace Transforms, General Properties of inverse Laplace transforms and Convolution Theorem, Laplace Transforms of periodic functions, Dirac-delta Function, Heaviside's Unit Function, Solution of ODE	15

	and linear simultaneous differential equations using Laplace transforms. Fourier Transform: Fourier integral representation, Fourier sine, cosine and complex transform, Finite Fourier Transforms and their applications. $Z -$ Transforms: Z-Transforms & its properties, inversion of Z – transform and applications of Z – transform	
Unit IV	Probability and Statistics Review of probability, Conditional probability and sampling theorems, Discrete and Continuous Probability Distribution, Probability Mass & Probability Density Functions, Distribution function, Discrete and Continuous probability distributions, Binomial, Poisson and Normal distributions.	15

1. Advanced Engineering Mathematics by E. Kreyszig, John Wiley and Sons, NC, New York.

- 2. Differential Equations by S. L. Ross, John Wiley & Sons, New York.
- 3. An Introduction to Probability Theory & its Applications by W. Feller, Wiley.

4. Probability and Statistics for Engineers and Scientists by R.E. Walpole, S. L. Myers and K. Ye, Pearson.

5. Integral Transforms and Their Applications by Lokenath Dennath and Dambaru Bhatta, Chapman and Hall/CRC Press.

Suggested Online Link:

 $1.\ MIT\ Open\ Learning\ -\ Massachusetts\ Institute\ of\ Technology,\ https://openlearning.mit.edu/$

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFICATE COURSE IN BASIC PHYSICS

Programme: Certificate Course in Basic Physics

Year: I Semester: I/II

Subject: Physics

Course Code:

Course Title: Computer Programming

Credits: 04 Tax. Marks External Exa nternal Ass		rks: 33
otal No. of 2	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit	Торіс	No. of Lectures
Unit I	Programming Fundamentals Introduction to computer, block diagram and organization of computer, number system and binary arithmetic, processing data, hardware, software, firmware, types of programming language -Machine language, Assembly level language, higher level language, source file, object file, translator-assembler, compiler, interpreter. Evolution and classification of programming languages.	15
Unit II	 Programming Techniques Steps in program development, algorithm, flowchart, pseudo code. C Language: 'C' character set, literals, keywords, identifiers, data types and size, variable declaration, expression, labels, statements, formatted input output statements, types of operators, data type conversion, mixed mode arithmetics, control structures. 	15
Unit III	Data Structures Storage classes, scope rules and visibility, arrays, pointers, dynamic storage allocation, structures and unions, self-referential structures. Relationship between pointers and arrays, dynamic arrays: Introduction to dynamic data structures linked lists, stack, and binary trees.	15
Unit IV	Functions and File Handling 'C' functions, library functions, parameter passing, recursion, 'C' files function for file handling, 'C' pre-processors and command line arguments, macros and conditional compiler directives.	15

1. C Programming Language by Briain W. Kenigham and Dennis Ritchie, Prentice Hall of India.

2. Programming with C by Byron Gottfried, Tata McGraw Hill.

3. The Complete Reference C by Herbert Schildt, Tata McGraw Hill.

4. Let us C by Yashwant Kanetkar, BPB Publication.

5. A Structured Programming Approach in C by B.A. Forouzan and R.F. Gilberg, Cengage Learning.

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFICATE COURSE IN BASIC PHYSICS Programme: Certificate Course in Basic Physics Year: I Semester: I/II Subject: Physics Course Code: Course Title: Fundamental Mechanics

redits: 04	Minor/Elective		
lax. Marks: 100 xternal Exam: 75 nternal Assessment: 25		rks: 33	
otal No. of I	Lectures-Tutorials-Practical (in hours per week): 4-0-0		
Unit	Торіс	No. of Lectures	
Unit I	Vectors Algebra and Ordinary Differential Equations Vector algebra. Scalar and vector products. Derivatives of a vector with respect to a parameter. 1st order homogeneous differential equations. 2nd order homogeneous differential equations with constant coefficients.	15	
Unit II	Translatory and Rotatary Motion and Conservation LawsFrames of reference. Newton's Laws of motion. Dynamics of a system ofparticles. Centre of Mass, Conservation of momentum. Work and energy.Conservation of energy. Motion of rockets, Angular velocity and angularmomentum. Torque. Conservation of angular momentum.		
Unit III	Gravitation Newton's Law of Gravitation. Motion of a particle in a central force field (motion in a plane, angular momentum conservation). Kepler's Laws (statement only). Satellite in circular orbit and applications. Geosynchronous orbits. Basic idea of global positioning system (GPS). Weightlessness. Physiological effects on astronauts.	15	
Unit IV	Elasticity Hooke's law - Stress-strain diagram - Elastic moduli-Relation between elastic constants - Poisson's Ratio-Expression for Poisson's ratio in terms of elastic constants - Work done in stretching and work done in twisting a wire – Twisting couple on a cylinder - Determination of Rigidity modulus by static torsion – Torsional pendulum-Determination of Rigidity modulus and moment of inertia - q, η and σ by Searles method.	15	

- 1. Sears, Zemansky and Young: University Physics
- 2. Berkeley Physics Course: Volume-1 Mechanics
- 3. Resnick, Halliday & Walker Fundamentals of Physics
- 4. Basudeb Bhattacharya: Engineering Mechanics 2nd Edn
- 5. Ronald Lane Reese: University Physics
- 6. B.L. Flint and H.T. Worsnop: Advanced Practical Physics for Students

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFICATE COURSE IN BASIC PHYSICS

Programme: Certificate Course in Basic Physics

Subject: Physics

Course Code:

Course Title: Waves and Oscillations

Credits: 04	Minor/Elective	
lax. Marks: xternal Exa nternal Asse otal No. of I	m: 75 Marks: 33	
Unit	Торіс	No. of Lectures
Unit I Unit II	Characteristics, Differential equation of a wave motion, principle of superposition, Interference, Beats, stationary waves, Energy of stationary waves, Wave velocity and group velocity, Fourier theorem, Fourier analysis of square, triangular and saw-tooth waves. Energy density of plane acoustic waves, Acoustic intensity, Measurement of acoustic intensity – the dB scale, Characteristics and loudness of Musical sound, Acoustic impedance, Reflection and transmission of acoustic waves. Acoustics of buildings, reverberation time, Sabine's formula, Principle of sonar system.	
	Ultrasonics Classification of Sound waves, Ultrasonics, Quartz crystal and Piezo electric effect, Magnetostriction effect, Properties of Ultrasonic, Detection of ultrasonic waves, Determination of velocity of ultrasonic waves in liquid (Acoustic grating method). Application of Ultrasonics.	15
Unit III	Simple Harmonic Oscillations Periodic motion, SHM in mechanical systems, Energy of Simple harmonic oscillator, Superposition of SHM(s), Oscillations of two masses connected by a spring, Non-linear (An-harmonic) oscillator and its applications to simple pendulum. Applications of Simple harmonic motion in compound pendulum, Torsional pendulum and LC circuit, Composition of two SHM(s) of different frequency ratio, Lissajous' figures for equal frequencies ratio and 2:1 frequencies ratio	15
Unit IV	Damped and Forced Harmonic OscillationsDamping force, Different cases for over, critical and under damping, Mechanical damped harmonic oscillators, Logarithmic decrement, Power Dissipation, Relaxation time & Quality Factor.	15

Forced oscillations, Mechanical driven harmonic oscillators, Transient and	
steady state behavior, Power absorption, phenomenon of resonance, amplitude	
resonance, velocity resonance, sharpness of resonance/Fidelity, Bandwidth and	
quality factor.	

- 1. R. Resnick and D. Hilliday: Physics Vol-I
- 2. D. S. Mathur: Mechanics
- 3. Brijlal and Subrahmanyam: Waves and Oscillations
- 4. B. S. Semwal and M. S. Panwar: Wave Phenomena and

MaterialScience

- 5. Berkeley Physics Course: Mechanics Vol-I
- 6. R. K. Ghose: The mathematics of waves an Vibrations
- 7. D. P. Khandelwal: Oscillations and Waves
- 8. I. I. Pain: Physics of Vibration
- 9. A. P. French: Vibrations and Waves

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFICATE COURSE IN BASIC PHYSICS

Programme: Certificate Course in Basic Physics

Subject: Physics

Course Code: **Course Title: Basic Electricity and Magnetism**

Credits: 04	Minor/Elect	
lax. Marks xternal Ex nternal Ass		g Marks: 33
'otal No. of	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit	Торіс	No. of Lectures
Unit I	Electrostatics:	
	Electrostatic Field, electric flux, Gauss's theorem of electrostatics.	15
	Applications of Gauss theorem- Electric field due to point	
	charge, infinite line of charge, uniformly charged spherical shell	
	and solid sphere, plane charged sheet, charged conductor. Electric	
	potential as line integral of electricfield, potential due to a point	
	charge, electric dipole, uniformly charged	
	spherical shell and solid sphere.	
Unit II	Magnetism	
	Magnetostatics: Biot-Savart's law and its applications- straight	15
	conductor circular coil, solenoid carrying current. Divergence and	
	curl of magnetic field. Magnetic vector potential. Ampere's	
	circuital law. Magnetic properties of materials: Magnetic	
	intensity, magnetic induction, permeability, magnetic	
	susceptibility. Brief introduction of dia-, para-and ferromagnetic	
	materials.	
Unit II	I Electromagnetic Induction and Alternating Current	
	Faraday's laws of electromagnetic induction, Lenz's law, self	15
	and mutualinductance, L of single coil, M of two coils. Energy	
	stored in magnetic field. Basic concepts of alternating currents.	
Unit IV	⁷ Maxwell`s equations and Electromagnetic wave propagation	
	Equation of continuity, Displacement current, Maxwell's	15
	equations, Poynting vector, energy density in electromagnetic	
	field, electromagnetic wave and its transverse nature.	

Suggested Reading

- 1. Edward M. Purcell: Electricity and Magnetism
- 2. J. H. Fewkes & J. Yarwood: Electricity & Magnetism, Vol. I
- 3. D. C. Tayal: Electricity and Magnetism

- 4. Ronald Lane Reese: University Physics
- 5. D. J. Griffiths: Introduction to Electrodynamics, 3rd Edn.
- 6. B. L. Flint & H. T. Worsnop: Advanced Practical Physics for Students
- 7. M. Nelson and J. M. Ogborn: Advanced level Physics Practicals, 4th Ed
- 8. I. Prakash & Ramakrishna: A Text Book of Practical Physics, 11th Ed
- 9. S. Panigrahi & B. Mallick: Engineering Practical Physics

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),
- https://www.youtube.com/user/nptelhrd
- 3. Swayam Prabha DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marksshall be as follows: Class Test/Assignment (25 marks)

Theory and Practical Examination Pattern

Theory (External) each theory paper carrying maximum marks 75 and shall consist of two sections A and B. Examination duration shall be 02 hours.

a. Section A: Multiple choice questions (MCQ)/true and false/very very short answer type questions. Section A will consist of 10 questions, each of one mark) Total: 10X1= 10 Marks
b. Section B: (Short answers type , 200 words) Section B will consist of 08 questions, each of 7 marks in which 5 has to be answered. Total: 7X5= 35 Marks
c. Section C: (Long answers type, 500 words) Section C will consist of 3 long answered questions, in which has to be answered, each of 15 marks.

Total: 2X15= 30 marks

For each theory paper internal assessment shall be conducted periodically (in the form of class tests and/or assignments/ group discussion/ oral presentation/ overall performance) during the semester period. Total marks allotted to internal assessment shall be 25 (Assignments 10 marks, written test/viva 10 marks and regularity 5 marks). The evaluated answer sheets/assignments have to be retained by the Professor In-Charge for the period of six months and can be shown to the students if students want to see the evaluated answer sheets. The marks obtained by the students shall be submitted to the Head of concerned department/ the Principal of the College for uploading onto the University examination portal.

Practical The laboratory work of the students has to be evaluated periodically.

The internal assessment (in the form of lab test, lab record, internal evaluation, assignment/home assignment and attendance) of total 10 marks for each semester shall be conducted during the semester. All kinds of exercises have to be conducted during a semester. Maximum 5 marks of attendance can be given to the students.

In each semester practical examination of 40 marks has to be conducted by two examiners (External and internal) having duration of 4 hours. The total number of students to be examined per batch should not be more than sixty. Marks obtained in the practical examination have to be submitted to the Head of the department/ Principal of the College. The Head of the Department/Principal of the College will make necessary arrangement for uploading the marks onto the University exam portal. The hard copy of the award list from portal has to be submitted to the Controller of Examination, Sri Dev Suman Uttarakhand University, Badshahithaul, New Tehri.

The breakup of marks for practical examination for each semester would be as follows:

Practical exam: Viva voce: Lab Record and collection: Sessional (Internal): Total:

30 Marks (exercises)
05 Marks
05 Marks
10 Marks
50 marks (each semester)